R ichard Vaughan W illiams, ${ }^{*, a}$ Vijay R . G adgil, ${ }^{\text {a }}$ A shwani Vij, ${ }^{a}$ J ames M. C ook, ${ }^{\text {b }}$ G reg Kubiak ${ }^{\text {b }}$ and Q i H uang ${ }^{\text {b }}$<br>a D epartment of Chemistry, U niversity of Idaho, M oscow, ID 83844-2343, USA<br>${ }^{\text {b }}$ D epartment of C hemistry, U niversity of W isconsin-M ilwaukee, M ilwaukee, W I 53201, U SA

The Weiss-C ook condensation of dimethyl 1,3-acetonedicarboxylatet with the unsymmetrical pentane-2,3-dione gives only two (1a and 1c) of the four possible epimers of tetramethyl 1-ethyl-3,7-dihydroxy-5-methyl-cis-bicyclo[3.3.0]octa-2,6-diene-2,4,6,8-tetracarboxylate in $86 \%$ isolated yield. The structures of 1 a and 1c have been established by means of single crystal X-ray crystallography.

## Introduction

In connection with our interest in the synthesis and study of potentially neutral homoaromatic semibullvalenes, ${ }^{1}$ we required the bicyclo[3.3.0]octadiene $\mathbf{1}$. The diene 1 had been prepared by the Weiss-Cook condensation of dimethyl 1,3acetonedicarboxylatet with pentane-2,3-dione(Scheme 1). ${ }^{2}$ The Weiss-Cook condensation is a remarkably versatile reaction which has been employed for the synthesis of a number of polyquinane natural products including modephene, isocomene, pentalenene, quadrone, gymnomitrol and bifurcarenone ${ }^{3} \mathrm{M}$ oreover, this condensation has been used in the preparation of a number of polyquinanes and polyquinenes of theoretical interest including triquinacenes, fenestranes and semibullvalenes. ${ }^{3}$



Scheme 1

## Results and discussion

To our surprise the coupling of dimethyl 1,3 -acetonedicarboxylate with the unsymmetrical pentane-2,3-dione resulted in the isolation of only two epimers of 1 in $86 \%$ overall yield and in an approximate ratio of 3:2 (NM R spectroscopy). We were unable to detect any other $2: 1$ condensation products from this reaction. Tentative assignment of the structure of the major product as epimer la was madeby analogy with the wellknown 2,6-diene configuration and the exo,exo preference (of the ester groups on the tetrahedral centres) of the products isolated in analogous Weiss-Cook condensations, ${ }^{3}$ such as $\mathbf{2}^{\mathbf{3}}$ and the bisenols $3 a^{4}$ and $\mathbf{3 b} .{ }^{5}$ It should be noted that two epimers of the sodium salt of $\mathbf{3 b}$ ( $\mathbf{4 a}$ and $\mathbf{4 b}$ ) have previously

2


$\mathbf{4 a}=$ exo, exo configuration of esters $\quad \mathbf{3 a R}=\mathrm{Et}$ $\mathbf{4 b}=$ exo, endo, configuration of esters $\mathbf{3 b} \mathrm{R}=\mathrm{Me}$

$$
\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}
$$

been isolated and characterized. ${ }^{5}$ Examination of the structures of these tetraesters by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and IR spectroscopy, as well as mass spectrometry supported this assignment. H owever, the spectroscopic evidence for the structure of 1a was not conclusive Similarly, the spectroscopic data for the minor product did not allow unequivocal structure assignment. Consequently, good crystals of both the major and minor products were subjected to single crystal X-ray structure determination.
The X-ray structure of 1a (Fig. 1) confirmed the predicated exo, exo configuration for the major isomer. The unit cell of la consisted of two crystallographically independent molecules. One of these was disordered with almost $50 \%$ occupancies of the disordered ethyl group sites. The esters C9-04-05-C 10 and $\mathrm{C} 13-08-09-\mathrm{C} 14$ and $\mathrm{C} 11-02-03-12$ and $\mathrm{C} 15-06-07-\mathrm{C} 16$ had mean plane least square (M PLA) values of 13.1(1) and $6.0(3)^{\circ}$, respectively, and torsion angles of $-18.7(2)$ (C18-C 1-C2-C17), -102.1(2) (C18-C1-C5-C11) and $66.9^{\circ}$ (C17-C2-C3-C9) which differ significantly from the corresponding angles in the minor isomer $\mathbf{1 c}$. The intramolecular hydrogen bonds in the ordered molecule $\{1.83(3) \AA$ for $\mathrm{H} 1 \cdots 04$ $\left[\mathrm{O} 1-\mathrm{H} 1 \cdots 04=148(3)^{\circ}\right]$ and $1.79(3) \AA$ for $\mathrm{H} 10 \cdots \mathrm{O}$ $\left[\mathrm{O} 10-\mathrm{H} 10 \cdots \mathrm{O}=147(3)^{\circ}\right]$ \} were longer than those found in the disordered molecule $\{1.88(3) \AA$ for $\mathrm{H} 11 \cdots 012$


Fig. 1 Stereo ORTEP plot of $\mathbf{1 a}$


Fig. 2 Stereo ORTEP plot of $\mathbf{1 c}$


Heat of formation $\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$
$\left[\mathrm{O} 11-\mathrm{H} 11 \cdots \mathrm{O} 12=146(3)^{\circ}\right]$ and $1.86(3) \AA$ for $\mathrm{H} 20 \cdots 018$ $\left.\left[\mathrm{O} 20-\mathrm{H} 20 \cdots \mathrm{O} 18=143(3)^{\circ}\right]\right\}$ as well as for those in $1 \mathrm{c} .{ }^{6}$ The only close range intermolecular interaction $[2.55(4) \AA$ ] resulted from the ordered molecule H 16C $\cdots 08^{c}(c=-x, 2-y, 1-z)$ and lay in the ab plane.

The minor isomer was shown to have the structure 1c (Fig. 2). In contrast with 1a, the ester groups $\mathrm{C} 9-04-05-\mathrm{C} 10$ and C13-08-09-C14 are in an almost eclipsed (parallel) conformation $\left[\mathrm{MPLA}=32.1(1)^{\circ}\right]$ while the remaining esters C11-02-03-12 and C15-06-07-C16 lie in the same plane such that the $\mathrm{C}=0$ groups are oriented away from each other $\left[\mathrm{MPLA}=9.2(1)^{\circ}\right]$. The configurations of the alkyl groups are described by the torsion angles C18-C1-C2-C17, C18-C1-C5-C11 and C17-C2-C3-C9 of -22.2(2), 26.4(2) and $58.2^{\circ}$, respectively. The intramolecular hydrogen bonds $\left\{1.78(3)\right.$ and $1.68(3) \AA$ for $\mathrm{H} 1 \cdots 04\left[\mathrm{O} 1-\mathrm{H} 1 \cdots 04=147(2)^{\circ}\right]$ and $\left.\mathrm{H} 10 \cdots 06\left[010-\mathrm{H} 10 \cdots 06=146(3)^{\circ}\right]\right\}$ weremuch shorter than the sum of the van der Waal radii of hydrogen and oxygen. ${ }^{6}$ The crystal packing diagram of 1 c showed a close H6…O1 ${ }^{\text {a }}(a=x-1, y, z$ ) contact of 2.47(2) A resulting in the molecular chain-type of stacking along the c -axis. A nother short range contact H 10B $\cdots 08^{b}(b=x,-1 / 2-y,-1 / 2-z)$ of $2.55(4) \AA$ linked these chains in the ab plane perpendicular to the c-axis.

Isolation of $\mathbf{1 a}$ as the major product was not unexpected. ${ }^{3}$ The 2,6-(as in 1, 2, $\mathbf{3}$ and $\mathbf{4}$ ) rather than 2,7-(as in $\mathbf{5}$ and $\mathbf{6}$ ) arrangement of double bonds was known to be the preferred configuration for the bicyclo[3.3.0]octane ring system, ${ }^{3,7}$ and the exo,exo configuration of la was the sterically least encumbered epimer. These conclusions are supported by A M 1 calculations ${ }^{8}$ as implemented in the HyperChem ${ }^{9}$ software package (the A M 1 energies are shown below).


However, the isolation of $\mathbf{1 c}$, in which the ester proximate to the bridgehead methyl was endo, as the only other product was surprising. Examination of the A M 1 energies revealed that $\mathbf{1 c}$ was of very similar energy to $\mathbf{1 b}$ and $\mathbf{1 d}$, and even to $\mathbf{5}$ and $\mathbf{6}$ suggesting that each of these isomers was a feasible product. We postulated that $\mathbf{1 c}$ must be much less soluble than the other isomers and that this solubility difference accounted for its isolation. To test this hypothesis we carried out equilibration studies in aqueous methanolic $\mathrm{NaHCO}_{3}$ on pure samples of 1a and 1c, both in bulk and as NMR experiments. In each case an equilibrium mixture of $\mathbf{1 a}$ and $\mathbf{1 c}$ resulted, but we were never able to detect any other products. Clearly, in solution under the Weiss-Cook condensation conditions only $\mathbf{1 a}$ and $\mathbf{1 c}$ are present in detectable (NMR spectroscopy) concentrations. It is interesting to note that in the variable temperature ( $265-310 \mathrm{~K}$ ) $75 \mathrm{M} \mathrm{Hz}^{13} \mathrm{C}$ spectra of $\mathbf{1 c}$ recorded in $\mathrm{CDCl}_{3}$ there was a small splitting of the methyl signals of the ester groups and a broadening of the carbonyl signals. There was no change in any of the remaining ${ }^{13} \mathrm{C}$ signals (except for the expected small variations of chemical shift) with temperature. The splitting and broadening disappeared in the spectra recorded at 320 K in
$\mathrm{CDCl}_{3}$ and at 297 K in $\mathrm{CD}_{3} \mathrm{OD}$ (which presumably disrupts the intramolecular hydrogen bonding between the esters and enols). These observations clearly correspond with restricted rotations of the ester groups, and not the presence of other epimers. If other epimers were present, then additional signals would be expected in the rest of the spectrum (note, the ${ }^{13} \mathrm{C}$ spectra of $\mathbf{l a}$ and $\mathbf{l c}$ are significantly different, and similar differences would be anticipated between the other epimers). Our AM 1 calculations on each epimer of 1 revealed numerous local minima, of very similar energy, for different conformations of the esters.


Although two isomers ( $\mathbf{1}$ a and $\mathbf{1 c}$ ) were formed in the condensation of dimethyl 1,3 -acetonedicarboxylate with pentane-2,3-dione, hydrolysis and decarboxylation of these tetraesters produced a single diketone $\mathbf{7}$ which has been elaborated to the unsymmetrically substituted semibullvalene $8 .{ }^{10}$ Similarly, the mixture of 1a and 1c was used directly in the synthesis, by a modification of the Grohmann procedure, ${ }^{11}$ of the semibullvalene 9 which was further elaborated to the bisanhydride $10 .{ }^{1}$ These approaches should be applicable to the preparation of a wide variety of unsymmetrically substituted semibullvalenes. ${ }^{1,10}$

## Experimental

Infrared spectra were recorded on a DigiLab Qualimatic or M odel FTS 15180, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra on an IBM N R 300 and mass spectra on a VG 7070 at 70 eV (EI) or using methane chemical ionization (CI). M elting points were determined on a hot stage and are uncorrected. M icroanalyses were performed by $\mathrm{M}-\mathrm{H}-\mathrm{W}$ L aboratories. J Values are given in Hz .

## X-R ay structure determinations

The X-ray diffraction data for $\mathbf{1 a}$ was collected at $-100^{\circ} \mathrm{C}$ on a Siemens three-circle diffractometer ( $\chi$-axis is fixed at $54.74^{\circ}$ ) equipped with a CCD detector maintained at $-54.4(2)^{\circ} \mathrm{C}$, using the $\omega$-scan technique. ${ }^{12}$ The initial cell constants were determined from reflection data obtained by collecting 60 tensecond frames at the detector resolution of $512 \times 512$ pixels. H owever, the final unit-cell values are based on the least square refinement of all the observed reflections. A complete hemisphere of data was scanned on omega ( $0.3^{\circ}$ ) with a run time of ten-second frames for a total of 1271 frames collected in three

Table 1 X-Ray crystallographic parameters for 1a and $\mathbf{1 c}$

|  | Compound 1a | Compound 1c |
| :---: | :---: | :---: |
| Crystal data |  |  |
| Empirical formula | $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{10}$ | $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{10}$ |
| Formula weight | 412.38 | 412.38 |
| Colour | Colourless | Colourless |
| Crystal size (mm) | $0.40 \times 0.25 \times 0.15$ | $0.25 \times 0.20 \times 0.10$ |
| Crystal system | Triclinic | M onoclinic |
| Space group | P1 | P $21 / \mathrm{c}$ |
| U nit cell dimensions: $\mathrm{a} / \AA \AA$ | 10.843(2) | 7.788(1) |
| b/Å | 10.984(2) | 20.215(2) |
| c/Å | 17.826(4) | 13.108(1) |
| $a 1^{\circ}$ | 89.84(3) |  |
| $\beta 1^{\circ}$ | 77.67(3) | 102.52 |
| $\gamma 1^{\circ}$ | 74.56(3) |  |
| Volume/A ${ }^{3}$ | 1995.8(7) | 2014.6(4) |
| Z | 4 | 4 |
| $\mathrm{D}_{\mathrm{c}} / \mathrm{gcm}{ }^{-3}$ | 1.372 | 1.360 |
| F (000) | 872 | 872 |
| A bsorption coefficient $/ \mathrm{mm}^{-1}$ | 0.112 | 0.946 |
| D ata collection |  |  |
| R adiation employed, $\lambda / \AA$ | M o-K $\alpha$ (0.710 73) | Cu-K $\alpha$ (1.541 84) |
| $\theta_{\text {max }}{ }^{1}$ | 26.96 | 54.99 |
| Index ranges | $-13 \leq h \leq 9$ | $-1 \leq h \leq 8$ |
|  | $-13 \leq \mathrm{k} \leq 13$ | $-1 \leq \mathrm{k} \leq 21$ |
|  | $-19 \leq 1 \leq 21$ | $-13 \leq 1 \leq 13$ |
| No. of data collected | 10500 | 3413 |
| N o. of unique data | 7236 ( $\left.\mathrm{R}_{\text {int }}=0.0222\right)$ | 2528 ( $\mathrm{R}_{\text {int }}=0.0165$ ) |
| D ata with $\mathrm{I}>2 \sigma(\mathrm{l})$ | 6473 | 2204 |
| $\mathrm{T}_{\text {max/min }}$ | 0.9539/0.9156 | 0.9969/0.9842 |
| Solution and refinement |  |  |
| Parameters refined | 701 | 347 |
| R, wR ( $2 \sigma$ data) | 0.0488 (0.1041) | 0.0346 (0.0868) |
| R, wR (all data) | 0.0566 (0.1102) | 0.0405 (0.0919) |
| G oodness-of-fit (G OF ) | 1.114 | 1.059 |
| L argest difference peak ( $\mathrm{e} \AA^{-3}$ ) | 0.360 | 0.209 |
| L argest difference hole (e $\AA^{-1}$ ) | 0.227 | -0.155 |
| Extinction coefficient | 0.0051(6) | 0.0036(3) |

sets plus a final set of 50 frames using the SM ART software. ${ }^{13}$ The crystal decay was monitored from reflection data from 50 frames collected at the beginning and at the end of data collection. The data reduction was accomplished by processing the frames data using SAINT ${ }^{14}$ software to give the raw file corrected for Lorentz/polarization (Lp)/decay. Since the raw file contains information about directional cosines, it was used for empirical absorption correction. For $\mathbf{1 c}$ c, the diffraction data were collected at 293(2) K on a Siemens R 3m/V diffractometer (upgraded to a P 4 model) using Cu-K a radiation ( $\lambda=1.54184$ $\AA$ ). The cell constants were determined from 20 computer centred reflections with $12.4 \leq 2 q \leq 42^{\circ}$. A complete hemisphere of data was collected by $\omega$-scans, ${ }^{12}$ with online profile fitting and variable scan speeds using the X SCA N S program. ${ }^{15}$ Three standard reflections ( $12-4,211$ and 3010 ), monitored every 97 reflections during data collection, showed no crystal decomposition. D ata were corrected for Lp effects and for absorption (empirical $\psi$-scans). The structures were solved by direct methods using SHELXS-90 ${ }^{16}$ and refined by fullmatrix least-squares method using SH ELXTL version 5.03. ${ }^{17,18}$ The final data collection and refinement parameters are listed in Table 1. In the case of 1a, the unit cell contains two crystallographically independent molecules. One of these molecules showed a disorder in the methyl and ethyl groups at the bridgehead carbon atoms C1 and C2. This disorder is modelled by refining the occupancy of the $\mathrm{CH}_{3}$ component in the ethyl group at $48 \%$ (C38) and 52\% (C38A). H ydrogen atoms were located from difference Fourier syntheses and refined with
isotropic temperature factors except for those fixed on C29, C38 and C38A (1a) and C14 (1c) using the R iding model. $\ddagger$

Weiss-C ook condensation of dimethyl 1,3-acetonedicarboxylate with pentane-2,3-dione
M odified from the Organic Synthesis general procedure for the Weiss-Cook condensation. ${ }^{2}$ A magnetically stirred mixture of pentane-2,3-dione ( $20 \mathrm{~g}, 0.2 \mathrm{~mol}$ ), dimethyl 1,3-acetonedicarboxylate ( $70 \mathrm{~g}, 0.4 \mathrm{~mol}$ ) and sodium hydrogen carbonate ( 2.5 g , 0.03 mol ) in water ( $410 \mathrm{~cm}^{3}$ )-methanol ( $150 \mathrm{~cm}^{3}$ ) was kept at ambient temperature for 24 h . (In later runs the reaction mixture was seeded with a few crystals of the pure epimer la four times during the first hour. This resulted in a more tractable precipitate, but otherwise gave identical results.) The resulting precipitate was filtered off to give an essentially pure mixture of the epimers 1a and $\mathbf{1 c}(70.8 \mathrm{~g}, 86 \%)$ which was used directly in our subsequent reactions. ${ }^{1}$ Pure epimers were obtained by fractional crystallization. The above mixture of epimers ( 25 g ) was recrystallized twice from ethyl acetate-hexane, allowing full crystallization (including cooling to $0^{\circ} \mathrm{C}$ ) before filtration. The resulting solid ( 6 g ) was recrystallized twice from methanol to give pure la ( 1.8 g ).
Tetramethyl 1-ethyl-3,7-dihydrox y-5-methyl-cis-bicyclo[3.3.0]-octa-2,6-diene-2,4-exo,6,8-exo-tetracarboxylate 1a. White prisms, mp 118-120 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3500-2800,3040,2982$, 2956, 1741, 1664, 1630, 1440, 1342, 1233, 1198; $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 10.98(1 \mathrm{H}, \mathrm{s}), 10.59(1 \mathrm{H}, \mathrm{s}), 4.06(1 \mathrm{H}, \mathrm{s}), 3.88(1 \mathrm{H}, \mathrm{s})$, $3.83(3 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.71(6 \mathrm{H}, \mathrm{s}), 1.8(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 14.3$ and 7.6), $1.5(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 14.3$ and 7.0$), 1.31(3 \mathrm{H}, \mathrm{s}), 0.8(3 \mathrm{H}$, observed as t but actually dd, J 7.6 and 7.0$) ; \delta_{\mathrm{c}}(75 \mathrm{M} \mathrm{Hz}$; $\mathrm{CDCl}_{3}$ ) 171.70, 170.81, 170.65, 170.25, 170.01, 169.35, 110.03, 106.66, 58.58, 58.31, 58.08, 54.91, 52.25, 52.11, 52.08, 51.63, 24.94, 18.04, 10.57; m/z (CI) 413 (4.3\%), 409 (2.8), 381 (43), 349 (100), 317 (100), 285 (47), 207 (45.4), 175 (19.3); (EI) 380 (13.7\%), 348 (14.0), 320 (14.8), 316 (9.7), 287 (15.5), 284 (7.6), 279 (38.9), 257 (20.1), 247 (14.6), 229 (24.3), 219 (32.2), 200 (39.8), 115 (42.5), 91 (75.7), 67 (100) (Found: C, 55.59; H, 5.56. Calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{10}: \mathrm{C}, 55.34 ; \mathrm{H}, 5.87 \%$ ).

The mixture of epimers ( 25 g ) was recrystallized twice from ethyl acetate-hexane, only allowing partial crystallization before filtration each time to yield pure $\mathbf{1 c}(2 \mathrm{~g})$.
Tetramethyl 1-ethyl-3,7-dihydroxy-5-methyl-cis-bicyclo[3.3.0]-octa-2,6-diene-2,4-endo,6,8-exo-tetracarboxylate 1c. White prisms, mp 139-141 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3500-3300,2983,2951$, $1743,1666,1624,1444,1350,1295,1242,1209 ; \delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{H} \mathrm{z}$; $\left.\mathrm{CDCl}_{3}\right) 10.8(2 \mathrm{H}, \mathrm{s}), 3.98(1 \mathrm{H}, \mathrm{s}), 3.83(3 \mathrm{H}, \mathrm{s}), 3.72(6 \mathrm{H}, \mathrm{s})$, $3.67(3 \mathrm{H}, \mathrm{s}), 3.57(1 \mathrm{H}, \mathrm{s}), 1.85(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 14.3$ and 7.6$), 1.60(1$ $\mathrm{H}, \mathrm{dq}, \mathrm{J} 14.3$ and 7.1 ), 1.58 ( $3 \mathrm{H}, \mathrm{s}$ ), 0.75 ( 3 H , observed as t but actually dd, J 7.6 and 7.1 ); $\delta_{\mathrm{c}}\left(75 \mathrm{M} \mathrm{H} \mathrm{z} ; \mathrm{CDCl}_{3}\right.$ at 320 K$) 171.40$, $170.46,170.33,169.73,169.44,169.36,106.99,105.39,60.56$,
$\ddagger$ A tomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic D ata Centre (CCDC). See Instructions for Authors, J. Chem. Soc., Perkin Trans. 1, 1997, I ssue 1. A ny request to the CCD C for this material should quote the full literature citation and the reference number 207/90.
58.76, 57.18, 57.04, 52.06, 51.78, 51.60, 51.24, 23.53, 21.61, 10.05; m/z (CI) 409 (2.9\%), 381 (21), 349 (49.7), 317 (100), 285 (25.4), 207 (17.7), 175 (12.9); (EI) 380 (11.8\%), 348 (52.6), 320 (100), 316 (26.6), 287 ( 41.3 ), 284 (14.8), 279 (92.8), 175 (75.6), 115 (60.5), 91 (65.3), 67 (40.6) (Found: C, 55.26; H, 5.63. C alc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{10}: \mathrm{C}, 55.34 ; \mathrm{H}, 5.87 \%$ ).

## Acknowledgements

This work was supported by a U niversity of Idaho Seed Grant, an Idaho State Board of Education-Specific Research Grant and the NSF-Idaho EPSCoR project Cooperative A greement number OSR-9350539. We thank Dr Roger D. Willett (Washington State University) and Dr Richard J. Staples (U niversity of Idaho) for providing facilities for obtaining the diffraction data. The single crystal CCD X-ray facility at the U niversity of Idaho was established with the assistance of the NSF-Idaho EPSCoR program under N SF OSR -9350539 and the M . J. M urdock Charitable Trust, Vancouver, Washington.

## References

1 R. V. Williams, V. R. Gadgil, K. Chauhan, D. van der Helm, M. B. Hossain, L. M. Jackman and E. Fernandes, J. Am. Chem. Soc., 1996, 118, 4208 and references cited therein.
2 S. H. Bertz, J. M. Cook, A. G awish and U. Weiss, Org. Synth., 1985, 64, 27.
3 A. K. Gupta, X . F u, J. P. Synder and J. M. Cook, Tetrahedron, 1991, 47, 3665; X. F u and J. M . Cook, A Idrichimica A cta, 1992, 25, 43.
4 P. Camps, Tetrahedron Lett., 1974, 4067.
5 S. H. Bertz, G. R ihs and R. B. Woodward, Tetrahedron, 1982, 38, 63.
6 A . Bondi, J. Phys. Chem., 1962, 68, 441.
7 R. Balkenhohl, M. Bohnenpoll and E. Winterfeldt, Chem. Ber., 1989, 122, 797.
8 J. J. P. Stewart, J. Comput. A ided M ol. Des., 1990, 4, 1.
9 H yperChem for W indows, H ypercube, Inc., 1994.
10 See M. Dohle, J. M anz, G. K. Paramonov and H. Quast, Chem. Phys., 1995, 197, 91.
11 L. S. M iller, K. Grohmann, J. J. D annenberg and L. Todaro, J. A m. C hem. Soc., 1981, 103, 6249.
12 C. F. Campana, D. F. Shepard and W. M Litchman, Inorg. Chem., 1980, 20, 4039.
13 Siemens SM ART Software, Version 4.043, Siemens A nalytical Instruments D ivision, M adison, WI, U SA, 1995.
14 Siemens, SAINT Software, Version 4.035, Siemans A nalytical Instruments D ivision, M adison, WI U SA, 1995.
15 Siemens, XSCANS software, Version 2.0, Siemens A nalytical Instruments D ivision, M adison, W I, U SA, 1992.
16 G. M. Sheldrick, SHELXS-90 incorporated in SHELXTL-Plus Software, Version 5.03, Siemens A nalytical Instruments Division, M adison, WI, U SA, 1990.
17 G. M. Sheldrick, SHELXL-93, Program for the Refinement of Crystal Structure, U niversity of G öttingen, G ermany, 1993.
18 Siemens, SHELXTL-Plus Software, Version 5.03, Siemens A nalytical Instruments Division, M adison, WI, U SA, 1995.

Paper 6/05817E
Received 21st A ugust 1996 A ccepted 18th N ovember 1996

